堆排序(Heap Sort)
665字约2分钟
2024-08-11
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
算法描述
将初始待排序关键字序列 (R1,R2….Rn) 构建成大顶堆,此堆为初始的无序区
将堆顶元素 R[1] 与最后一个元素 R[n] 交换,此时得到新的无序区 (R1,R2,……Rn-1) 和新的有序区 (Rn) ,且满足 R[1,2…n-1]<=R[n]
由于交换后新的堆顶 R[1] 可能违反堆的性质,因此需要对当前无序区 (R1,R2,……Rn-1) 调整为新堆,然后再次将 R[1] 与无序区最后一个元素交换,得到新的无序区 (R1,R2….Rn-2) 和新的有序区 (Rn-1,Rn) 。不断重复此过程直到有序区的元素个数为 n-1 ,则整个排序过程完成
动图演示
代码实现
public static void main(String[] args) {
int[] array = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};
heapSort(array);
System.out.println(Arrays.toString(array));
}
public static void heapSort(int[] array) {
if (array == null || array.length <= 1) {
return;
}
int length = array.length;
//1.构建大顶堆
for (int i = length / 2 - 1; i >= 0; i--) {
//从第一个非叶子结点从下至上,从右至左调整结构
adjustHeap(array, i, length);
}
//2.调整堆结构+交换堆顶元素与末尾元素
for (int j = length - 1; j > 0; j--) {
//将堆顶元素与末尾元素进行交换
swap(array, 0, j);
//重新对堆进行调整
adjustHeap(array, 0, j);
}
}
/**
* 调整大顶堆(仅是调整过程,建立在大顶堆已构建的基础上)
* @param array
* @param i
* @param length
*/
private static void adjustHeap(int[] array, int i, int length) {
//先取出当前元素i
int temp = array[i];
//从i结点的左子结点开始,也就是2i+1处开始
for (int k = i * 2 + 1; k < length; k = k * 2 + 1) {
//如果左子结点小于右子结点,k指向右子结点
if (k + 1 < length && array[k] < array[k + 1]) {
k++;
}
//如果子节点大于父节点,将子节点值赋给父节点(不用进行交换)
if (array[k] > temp) {
array[i] = array[k];
i = k;
} else {
break;
}
}
//将temp值放到最终的位置
array[i] = temp;
}
/**
* 交换元素位置
* @param array
* @param a
* @param b
*/
private static void swap(int[] array, int a, int b) {
int temp = array[a];
array[a] = array[b];
array[b] = temp;
}
算法分析
最佳情况:T(n) = O(nlogn) 最差情况:T(n) = O(nlogn) 平均情况:T(n) = O(nlogn)