归并排序(Merge Sort)
554字约2分钟
2024-08-11
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。
归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。
算法描述
把长度为n的输入序列分成两个长度为n/2的子序列
对这两个子序列分别采用归并排序
将两个排序好的子序列合并成一个最终的排序序列
动图演示
代码实现
public static void main(String[] args) {
int[] array = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};
mergeSort(array);
System.out.println(Arrays.toString(array));
}
public static void mergeSort(int[] array) {
if (array == null || array.length <= 1) {
return;
}
sort(array, 0, array.length - 1);
}
public static void sort(int[] array, int left, int right) {
if (left == right) {
return;
}
int mid = left + ((right - left) >> 1);
// 对左侧子序列进行递归排序
sort(array, left, mid);
// 对右侧子序列进行递归排序
sort(array, mid + 1, right);
// 合并
merge(array, left, mid, right);
}
public static void merge(int[] array, int left, int mid, int right) {
int[] temp = new int[right - left + 1];
int i = 0;
int p1 = left;
int p2 = mid + 1;
// 比较左右两部分的元素,哪个小,把那个元素填入temp中
while (p1 <= mid && p2 <= right) {
temp[i++] = array[p1] < array[p2] ? array[p1++] : array[p2++];
}
// 上面的循环退出后,把剩余的元素依次填入到temp中
// 以下两个while只有一个会执行
while (p1 <= mid) {
temp[i++] = array[p1++];
}
while (p2 <= right) {
temp[i++] = array[p2++];
}
// 把最终的排序的结果复制给原数组
for (i = 0; i < temp.length; i++) {
array[left + i] = temp[i];
}
}
算法分析
最佳情况:T(n) = O(n) 最差情况:T(n) = O(nlogn) 平均情况:T(n) = O(nlogn)